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In this article we suggest a method of
evaluating learner expertise based on
assessment of the content of working memory
and the extent to which cognitive load has been
reduced by knowledge retrieved from
long-term memory. The method was tested in
an experiment with an elementary algebra
tutor using a yoked control design. In the
learner-adapted experimental group,
instruction was dynamically tailored to
changing levels of expertise using rapid tests
of knowledge combined with measures of
cognitive load. In the nonadapted control
group, each learner was exposed to exactly the
same instructional procedures as those
experienced by the learner’s yoked participant.
The experimental group demonstrated higher
knowledge and cognitive efficiency gains than
the control group.

Processing limitations of human working
memory are known to be a major factor influ-
encing the effectiveness of instructional presen-
tations. A limited working memory capacity
could easily be overloaded if more than a few
chunks of information are processed at the same
time (e.g., Baddeley, 1986; Miller, 1956). Organ-
ized, domain-specific, long-term memory
knowledge structures (or schemas) allow people
to overcome the limitations of working memory
by “chunking” many elements of information
into a single, higher-level element (see Chi, Gla-
ser, & Rees, 1982; Larkin, McDermott, Simon, &
Simon, 1980). By treating many elements of
information as a single element in working
memory, long-term memory schematic knowl-
edge structures may reduce working memory
load. Another way to reduce working memory
processing limitations is to practice the skills
provided by schemas until they can operate
under automatic rather than controlled process-
ing (Kotovsky, Hayes, & Simon, 1985; Shiffrin &
Schneider, 1977). 

From a cognitive load perspective, the major
role of learning in cognitive functioning is acqui-
sition and automation of schematic knowledge
structures in long-term memory. As our previ-
ous research on the expertise reversal effect indi-
cated (see Kalyuga, Ayres, Chandler, & Sweller,
2003 for an overview), the effectiveness of learn-
ing from different instructional formats and pro-
cedures may significantly alter with the
development of learner expertise in a domain,
because of cognitive load factors. As learners
acquire more knowledge in a domain, their pre-
vailing cognitive activities change. Construction
of new schemas is the novice’s dominant cogni-
tive activity that requires appropriate instruc-
tional support. In contrast, experts tend to
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retrieve and apply available long-term memory
knowledge structures to handle situations and
tasks within their area of expertise. The coordi-
nation of cognitive activities and control of the
flow of information at different stages are con-
trolled by a central executive, according to some
theorists. For example, the concept of a central
executive developed by Baddeley (1986)
explains working memory operations in lower-
level cognitive tasks. In realistic educational set-
tings, as well as in most everyday situations,
people are usually dealing with complex cogni-
tive tasks that require extensive use of available
long-term memory knowledge. 

In general, a central executive should be able
to determine what information learners attend
to and what cognitive activities they engage in at
any specific stage of cognition. Sweller (2003), in
a departure from current theories, suggested
that such decisions must be based entirely on a
combination of knowledge and random factors.
If there are no other factors available, a fixed
central executive is excluded. Within the present
framework, well-developed schemas held in
long-term memory are a major source of knowl-
edge able to carry out an executive function dur-
ing high-level cognitive processes. That is, when
dealing with high-level cognitive processes, we
consider a central executive not as a permanent
processor in working memory, but as an entity
constructed for every specific task at hand by
retrieving appropriate schemas from long-term
memory. Such a functional approach regards a
central executive as a set of schemas temporarily
combined to perform a specific function of man-
aging incoming information streams for a spe-
cific task. Because the functional central
executive operates within working memory, it
obviously consumes working memory
resources, unless all relevant schemas are fully
automated. 

When faced with a novel situation, people
use general search strategies in an attempt to
impose some order on elements of incoming
information. Alternatively, instructional expla-
nations can also perform an executive function
when dealing with unlearned material. Provid-
ing a partial substitute for the missing schema-
based cognitive central executive at the initial
stage of learning might be a primary function of

instruction. Direct instructional guidance (e.g.,
worked examples) is able to provide a strong
substitute for a cognitive central executive: It
tells the learner exactly how to manipulate the
information to solve a task. In contrast, problem
solving or exploratory learning provide the least
effective executive function at the initial stages
of learning (Kalyuga, Chandler, Tuovinen, &
Sweller, 2001).

The relative weight of schemas and instruc-
tional explanations in a learner’s central execu-
tive for a task depends on the level of learner
expertise. For novices in a domain who are fac-
ing a new task, instruction provides the only
available guidance. For experts in the domain
who are facing the same task, the task will be
very familiar and all necessary schemas are
likely to be available in long-term memory. At
intermediate levels of knowledge, these two
components complement each other, ideally
without gaps or overlap. A well-balanced cen-
tral executive should include all necessary sche-
mas for dealing with previously learned,
lower-level elements of incoming information,
and full instructional guidance for dealing with
all unlearned, higher-level units. 

One obvious condition under which a central
executive is unbalanced occurs if there are ele-
ments of information for which no guidance is
provided by either component of the central
executive. When dealing with these elements of
information, learners have to resort to problem-
solving search strategies that are cognitively
inefficient and can cause high working-memory
loads (Sweller, 1988). The central executive
might also be unbalanced if there were an over-
lap between its schema-based and instruction-
based components, because both components
are available for dealing with some units of
information. In this case, the learner is likely to
attempt to relate the overlapping components of
the central executive. This process of cross-refer-
encing the related components of the central
executive will require additional working-mem-
ory resources. As a result, less cognitive capacity
will be left for schema application and automa-
tion. Such an unbalanced central executive is a
result of nonoptimal cognitive load manage-
ment during instruction and represents a basic
cause of the expertise reversal effect. 
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In order to optimize cognitive load, instruc-
tional designs should be tailored to changing
levels of learner expertise in a specific domain.
User-tailored instructional procedures require
methods of assessment of learner expertise that
could be used in real time during instruction.
Because long-term memory schemas in their
guiding, executive role define the features and
processes of working memory during knowl-
edge-based performances, evaluating the execu-
tive components of working memory during
complex cognitive activities may provide indica-
tors of levels of expertise. According to the the-
ory of long-term working memory (Ericsson &
Kintsch, 1995), experts’ schemas associated with
components of working memory create long-
term working memory structures with charac-
teristics that are different from those of working
memory in knowledge-lean situations. Long-
term working memory has virtually unlimited
capacity and prolonged duration. The theory of
long-term working memory describes a possible
mechanism of executive functioning of schemas
held in long-term memory. From this point of
view, assessment of levels of expertise in a
domain should be based on tests of the content
of a student’s long-term working memory (if
any) during complex cognitive activities. How
can researchers capture that content?

Generally, educators can present students
with a task in a domain to try to find the highest
level of schematic knowledge that students
apply to the task. High-knowledge individuals
may be able to see higher-level structures in the
material and analyze it using a conceptually
driven approach. Novices at best may see only
some randomly combined lower-level compo-
nents and apply a data-driven analysis. The
availability of schema-based knowledge struc-
tures in long-term memory is the major factor
determining such expert-novice differences. 

In the case of procedural knowledge,
researchers need to establish the schematic
knowledge that guides the students’ problem
solving as they approach a task. We argue that
this information can be obtained by asking stu-
dents to rapidly indicate their first step toward
solution of a task. Experts should be able to rap-
idly retrieve appropriate solution schemas. For
example, when encountering the algebraic equa-

tion (2x – 3) ÷ 2 = 3, some students (depending
on their level of expertise) might first multiply
both sides of the equation by 2 to obtain 2x – 3 =
6; others could effortlessly and rapidly do that
operation mentally while adding 3 to both sides
of the equation, generating 2x = 9 as their first
recorded step; high-level experts could also
mentally divide both sides by 2 and write the
final answer as their first step: x = 9 ÷ 2. Such
step skipping is an important characteristic of
higher levels of expertise as a consequence of
well learned or automated solution procedures
(Blessing & Anderson, 1996; Sweller, Mawer, &
Ward, 1983). On the other hand, novices may at
best apply some general problem-solving meth-
ods, such as means-ends analysis or a trial and
error technique, which could also be evident
from their first solution step.

Our preliminary studies (Kalyuga & Sweller,
2004) using algebra and coordinate geometry
materials for Year 9 and 10 students indicated
highly significant correlations (up to .92)
between performance on such tests and tradi-
tional measures of knowledge that required
complete solutions of corresponding tasks. The
purpose of the present study was to find out if
the suggested testing approach could be imple-
mented in a computer-based learning environ-
ment for dynamically adapting instruction to
changing levels of learner expertise in a domain.

The method was tested in an experiment
with an algebra tutor using a yoked control
design. The computer-based tutor in elementary
algebra equations was designed as a series of
worked examples, completion assignments, and
conventional problems combined using the
completion strategy (van Merriënboer, 1990).
This strategy is based on a sequence of instruc-
tional procedures from fully worked out exam-
ples with complete task solutions to
conventional problems. Completion assign-
ments contain a problem description, incom-
plete solution, and tasks to complete. Renkl and
Atkinson (2003) demonstrated that as levels of
learner knowledge in a domain increase, parts of
worked examples should be progressively
replaced with problem-solving steps (faded
worked examples technique). In the learner-
adapted experimental group of the current
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experiment, the allocation of learners to appro-
priate completion assignments or stages of the
faded worked examples was based on the out-
comes of an initial, rapid, diagnostic test; the
learners’ progress through the training session
was monitored, and instruction was tailored
according to changing levels of expertise, again
using rapid tests of expertise. In the nonadapted
control group, each learner was exposed to the
same instructional procedures as those experi-
enced by the learner’s yoked participant but was
not tested during the training session.

To produce a better indicator of the learners’
expertise in a domain, the rapid measures of
schematic knowledge were combined with mea-
sures of cognitive load based on subjective rat-
ings of mental effort. Higher levels of expertise
are associated with more effortless performance
of corresponding tasks because of a partial or
full automation of well-learned procedures.
Cognitive efficiency as a combined measure of
the rapid test performance and mental effort
was used in the completion strategy for the ini-
tial selection of the appropriate assignments, as
well as for monitoring learners’ progress during
instruction and real-time tailoring of instruction
to changing levels of expertise. We hypothesized
that by the end of the session, the learner-
adapted experimental group would demonstr-
ate better instructional outcomes than the
nonadapted group.

METHOD

Participants

Thirty Grade 10 students from a Sydney school
participated in the experiment. At the time of the
experiment, students had been taught algebraic
operations and equations necessary for solving
tasks included in the test. The participants were
randomly assigned to 15 pairs; for each pair, one
student was randomly assigned to the experi-
mental group and the other was assigned to the
yoked control group.

Materials and Procedure

Instructional packages were designed using
Authorware Professional software and deliv-

ered through four Power Macintosh desktop
computers. All participants were trained and
tested individually in one session. Initially, each
participant was presented with exercises in typ-
ing simple algebraic expressions, including all
operations and symbols that learners could
encounter in subsequent sessions. The experi-
mental procedure included an initial rapid diag-
nostic test, an adaptive training session for the
experimental group with yoked controls in the
control group, and a final rapid diagnostic test.

Initial rapid diagnostic test. The initial test was
designed to assess the initial level of learner
expertise in the domain. In the task statement
preceding the test, students were asked, for each
equation they would see on the following pages,
to type a single one-line step that they would
normally make first when solving the equation
on paper. A specific example using the equation
2(3x – 1) = 1 was provided. It was explained that
when asked to solve this equation, some people
would first write 2 * 3x – 2 * 1 = 1, others could
start from 6x – 2 = 1 or 6x = 3, and some might
even write the final answer (x = 1⁄2) as their first
step. If they did not know how to solve an equa-
tion, students were instructed to click DON’T

KNOW. No more than one minute was allowed to
type each answer.

Three equations were presented on the fol-
lowing three pages. For the first equation, –3x =
7, a score of 2 was allocated for typing the final
answer, or 1 for typing an intermediate solution
step, for example, –3x ÷ 3 = 7 ÷ 3. A nil score was
allocated for a wrong answer, no response, or
for pressing the DON’T KNOW button. For the sec-
ond equation, 4x + 3 = 2, scores of 4 or 3 were
allocated respectively for typing the final
answer or the step immediately preceding it. A
score of 2 was given for an answer at the level of
the first equation (e.g., 4x = –1 or 4x = 2 – 3), and
a score of 1 for an intermediate step preceding it,
for example, 4x + 3 – 3 = 2 – 3. Similarly, for the
third equation, (2x + 1) ÷ 3 = 2, scores ranging
from 6 to 0 were allocated (e.g., 6 for the final
answer, x = 5 ÷ 2, 5 for typing 2x ÷ 2 = 5  ÷  2, 4
for typing 2x = 5 or 2x = 6 – 1, etc.).

After learners typed their first solution step,
the following instruction appeared on the
screen: “Indicate how difficult this task was by
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clicking on an appropriate answer.” The partici-
pants had to select one of the nine options
(Extremely easy, Very easy, Moderately easy,
Slightly easy, Neither easy nor difficult, Slightly dif-
ficult, Moderately difficult, Very difficult, and
Extremely difficult). Thus, a mental effort rating
ranging from 1 (extremely easy) to 9 (extremely dif-
ficult) was collected for each task. 

The mental effort rating (R) of each task was
combined with the performance measure on the
same task (P) to provide an indicator of cogni-
tive efficiency (E), where E was defined by E = P
÷ R. This definition was different from that first
suggested by Paas and van Merriënboer (1993)
and used in our previous studies (e.g., Kalyuga
et al., 2001). In those studies, efficiency indica-
tors were calculated after experiments had been
completed. The efficiency was effectively
defined as the difference between z-scores for
performance and mental effort ratings, and the
experimental data means and standard devia-
tions were used to calculate these z-scores. In the
current study, we needed efficiency indicators in
real time during the experiment, and so could
not calculate z-scores in a similar way. Never-
theless, the efficiency indicator, defined as P ÷ R,
has similar general features to those of the pre-
viously used construct in that efficiency is
higher if similar levels of performance are
reached with less effort or, alternatively, higher
levels of performance are reached with the same
mental effort invested. This definition is consis-
tent with the common sense understanding of
efficiency as an effect relative to the resources
spent to obtain the result.

For each task level, a critical level of cognitive
efficiency was defined as Ecr = Pmax ÷ Rmax, or
Ecr = Pmax ÷ 9, where Pmax is the maximum
performance score for the given task level. Cog-
nitive performance of a learner in a given task
was considered efficient (and the learner was
regarded as competent), if E > Ecr (see Figure 1).
If E ≤ Ecr, cognitive performance was regarded
as relatively inefficient and the learner was
regarded as less competent. Although the values
of the critical efficiency levels are selected arbi-
trarily, they could be refined or adjusted experi-
mentally. The rationale for such levels was
based on the general assumption that if someone
invests maximum mental effort in a task but

does not display the maximum level of the task
performance, his or her cognitive performance
should not be regarded as efficient (e.g., point A
in Figure 1). On the other hand, if someone per-
forms at the maximum level with less than a
maximum mental effort, his or her cognitive per-
formance should be regarded as efficient (e.g.,
point B). All other (nonextreme) cases (e.g.,
points R1,P1 and R2,P2) should be judged rela-
tive to the critical level. Similar to Paas and van
Merriënboer’s (1993) approach, the proposed
definition is based on a simplifying assumption
of a linear relation between performance and
mental effort (which does not hold well when
performance approaches asymptotic levels). The
critical levels of efficiency for the first, second,
and third tasks in the rapid test are correspond-
ingly 2⁄9, 4⁄9, and 6⁄9 (or 2⁄3). These critical levels
were used for allocating learners in the experi-
mental group to appropriate stages in the train-
ing session. 

Training session. The training session was
designed as a series of worked examples, com-
pletion assignments (faded worked examples),
and conventional problems, according to the
completion strategy. In the learner-adapted for-
mat, the allocation of learners to appropriate
stages of instruction was based on the outcomes
of the initial rapid diagnostic test (Figure 2).
Learners who obtained an efficiency level of 2⁄9
or less on the first task of the initial diagnostic
test started training from the first stage. Two
fully worked out examples were presented, each
followed by a problem-solving exercise. Time
spent studying worked examples was user con-
trolled, and time for solving a problem was lim-
ited to 3 min. If all attempts within the 3-min
limit were unsuccessful, learners were pre-
sented with a fully worked out solution.

A rapid diagnostic procedure similar to that
in the initial diagnostic test was used for moni-
toring learner progress during the training ses-
sion (with the equation –4x = 3). In order to be
able to get to the next stage of training, a learner
efficiency indicator had to be more than 2⁄9. If the
efficiency indicator was equal to or less than 2⁄9
but more than 1⁄9, the learner had to undertake
some additional training in the form of a set of
four shortened worked examples that demon-
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strated the major steps, without detailed expla-
nations of intermediate procedures, followed by
another attempt on the rapid diagnostic task. If
the efficiency was equal to or less than 1⁄9, the
learner had to go through more training, includ-
ing two fully worked out examples followed by
the set of four shortened worked examples, and
then attempt the diagnostic task again.

If a learner efficiency measure on the first
task of the initial  diagnostic test was more than
2⁄9, but on the second task was 4⁄9 or less, the
learner started the training session from the sec-
ond stage, which contained two completion
assignments (faded worked examples), each fol-
lowed by a corresponding problem exercise. In
completion assignments, the explanation of the
last procedural step was omitted, and learners
were asked to complete the solution themselves
and type in their final answer. If a learner could

not solve the remaining equation (of the type, 2x
= 5) in one minute, the correct solution was pro-
vided. In problem-solving exercises, if learners’
attempts within the 3-min limit were unsuccess-
ful, they were presented with a fully worked out
solution. At the end of this training stage, a
rapid diagnostic test similar to the second ques-
tion of the initial diagnostic test (3x + 7 = 3) was
used. The procedure followed was identical to
the procedure for the first stage (Figure 2).

If a learner efficiency indicator on the first
task of the initial diagnostic  test was more than
2⁄9, and on the second task was more than 4⁄9, but
on the third task was 2⁄3 or less, the learner
started the training session from the third stage.
This stage was similar to the previous one,
except that a lower level of instructional guid-
ance was provided to learners (in completion
assignments, explanations of the two final pro-

Figure 1 Graphical representation of learner cognitive efficiency.

Note: E = Efficiency; Ecr = a critical level of Efficiency;
Pmax = the maximum performance score; Rmax = the
maximum mental effort rating.
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cedural steps were eliminated). At the end of
this stage, a rapid diagnostic test similar to the
third question of the initial test was used.
Finally, if a learner’s efficiency indicators on all
three tasks of the initial diagnostic test were
above corresponding critical levels (indicating
an expert performance level), the learner started
training from the final fourth stage, which con-
tained only four problem-solving exercises with
corresponding feedback.

Thus, in the learner-adapted format, learners
who indicated a low cognitive efficiency level in
the initial diagnostic test went through all four
stages of the training session. How long they
stayed at each stage depended on their perfor-
mance on diagnostic tests during the session. At
the other extreme, learners who indicated the
highest cognitive efficiency level in the initial

diagnostic test were expected to start the train-
ing session from the fourth stage, which
included only problem-solving exercises. In con-
trast, in the nonadapted format group, each
learner started the training session from the
same stage as the paired learner in the learner-
adapted format group, and performance during
the training was not monitored. The learners in
both groups went through the same stages of the
training session, thus equalizing experimental
conditions. The only difference was that in the
learner-adapted format group, the selection and
sequence of training episodes was tailored to the
specific current level of each learner’s expertise,
whereas in the nonadapted format group it was
not (it was tailored to the level of a different indi-
vidual, the correspondent yoked participant).

Figure 2 Flow chart of the adaptive procedure for the experimental training session.

Note: E = Efficiency.
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Final rapid diagnostic test. After learners com-
pleted the training session, they were presented
with the final rapid diagnostic test, which was
similar to the initial diagnostic test (Figure 2). 

RESULTS 

The independent variable was the format of the
training session (learner adapted or non-
adapted). The dependent variables under analy-
sis were:

• Initial test scores (the sum of the three test
scores for the initial test).

• Final test scores (the sum of the three test
scores for the final test).

• Differences between the final and initial test
scores as indicators of the gains in learner
knowledge due to the instructional format.

• Differences between average (over the three
test items) cognitive efficiency scores for the
final rapid test and average cognitive efficiency
scores for the initial rapid test providing indica-
tors of gains in learners cognitive efficiency due
to the format of the training session.

• Instruction time.

 Means and standard deviations are displayed in
Table 1.

There was a significant difference between
groups for average efficiency gains, t(14) = 1.89,
p < 0.05 (one-tailed t tests for dependent groups
were conducted because all hypotheses were
directional), Cohen’s d effect size 0.69. The
learner-adapted instructional format resulted in
significantly higher average efficiency gains
than the nonadapted (yoked-control) format.1

There were marginally significant differences
for test score gains, t(14) = 1.51, p < 0.1, Cohen’s
d effect size 0.55. The means indicated a higher
test score gain for the learner-adapted group (a
medium-to-large effect size).2

Although training stages and times in both
formats were equalized by the use of yoked
pairs, the learner-adapted format included inter-
mediate diagnostic test items, each followed by
a separate rating scale, that were not included in
the nonadapted format. Many learners in the
learner-adapted condition had to go through the
same diagnostic items and rating scales several
times before they attained a sufficient level of
cognitive efficiency to proceed to the next train-
ing stage. This characteristic of the learner-
adapted format resulted in an extension of the
total training session time for this group. When
the time related to diagnostic test items and rat-
ing scales (noninstruction time) was deducted
from the total training session time (Table 1
shows instruction times without the time
required by the diagnostic tests and rating
scales), the mean instruction times for the two
groups were identical due to the equalizing
function of the yoked pairs procedure.

Student actions during learning were
recorded electronically and indicated that most
participants in the learner-adapted group pro-
ceeded through all four stages of the training
session (because they were novices); 2 partici-

Table 1 Mean test scores, knowledge and
efficiency gains, and instruction
time by experimental conditions.

Experimental conditions
Learner- Non-
adapted adapted

Variable  format format

Initial total test score
M 3.00 4.00 
SD 1.81 2.93

Final total test score
M 5.27 4.67 
SD 3.26 3.35

Knowledge gains 
M 2.27 0.67 
SD 2.28 3.52

Efficiency gains 
M 0.63 0.03 
SD 1.03 0.66

Instruction time
M 708.00 725.00
SD 352.00 268.00

1 When the three items were analyzed separately, there
were no statistically significant differences in efficiency gains
for the first two items, although the gains were always higher
for the learner-adapted group; there was a significant
difference for the third item, t(14) = 2.11, p < .025.

2. When the three items were analyzed separately, there
were marginally significant differences in item score gains for
the first (t(14) = 1.47, p < .1) and third (t(14) = 1.48, p < .1)
items, and no difference for the second item.
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pants started their training from the second
stage. The individual progression of learning in
the learner-adapted group varied considerably.
For example, 11 participants proceeded through
the Stage 1 diagnostic test more than once, and
all of them studied both full and shortened
worked examples at least once; 8 participants
went through this test more than twice, 5 partic-
ipants repeated it more than three times, and 3
participants proceeded through this test more
than four times. All participants went through
the Stage 2 diagnostic test only once, and 4 par-
ticipants proceeded through the Stage 3 test
more than once (2 of them studied only short-
ened worked examples). This set of sequences
indicates that the first operation (dividing both
parts of an equation by the same number) was
the most difficult one for many students, and the
second operation (adding the same number to
both sides of an equation) was the easiest one.
Only 3 students completed all problem exercises
and completion assignments without errors and
repeated attempts. Three participants reat-
tempted some solutions at each of four stages, 4
participants made repeated attempts on at least
three stages, 3 students reattempted solutions at
two stages, and 2 participants reattempted solu-
tions only at one stage. Together with higher
efficiency gains and somewhat higher knowl-
edge gains for the learner-adapted group, these
observations show that the adaptive procedure
was successful in individualizing instructional
sequences during the training session. 

DISCUSSION

Optimizing cognitive load and building adap-
tive e-learning environments require new rapid
methods of assessment of student levels of
knowledge. In this article, a rapid method of
measuring learner levels of expertise in a spe-
cific area was used together with online mea-
sures of subjective mental effort for the dynamic
selection of learning tasks. Students were asked
to indicate their first step toward solution of
each equation and rate their mental effort while
performing the task. More expert learners were
assumed to use their schematic knowledge base
to retrieve appropriate solution schemas with

minimal effort. Experimental results indicate
that the method could be used to build efficient
learner-adapted instructional procedures in
electronic learning environments based on mon-
itoring learner ongoing cognitive performance.
The suggested approach may also contribute to
implementing principles of deliberate practice in
online learning environments for advanced
learners (see van Gog, Ericsson, Rikers, & Paas,
this issue).

The yoked control design allowed us to iso-
late the effects of adaptive training separately
from other possible factors influencing instruc-
tional efficiency, such as the number of studied
examples and exercises, or instruction time.
However, the yoked treatment might result in
inappropriate training schedules for some par-
ticipants, for instance, when a low-knowledge
learner happens to be a yoked control for a high-
knowledge learner. Stronger control and treat-
ment comparisons may be needed in future
studies; for example, a comparison of a learner-
adapted condition with an instructional proce-
dure containing all possible examples and
exercises giving a maximum training treatment.
Also, the adaptive decision rules employed in
this study were selected in a rather arbitrary
fashion based on commonsense considerations.
Future empirical studies and comparisons of dif-
ferent decision rules could provide better algo-
rithms and increase the instructional effects of
adaptive training. 

It should be noted that the learners in the
adapted format group sometimes repeated the
same diagnostic items and additional training
segments (containing sets of two full worked
examples and/or four shortened worked exam-
ples) several times, until their efficiency indica-
tor allowed them to continue to the next training
phase. Their yoked controls received the corre-
sponding sets of fully worked examples and
shortened worked examples once only,
although the time made available to the controls
was equal to the total time available to the
adapted format group. Thus, for some pairs, the
adapted format group received the same mate-
rial for relatively short periods on multiple occa-
sions, while the yoked controls received that
material once only, but for a relatively longer
period that equaled the addition of the multiple
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periods required by the adapted format group.
It is possible that the repetition, and not only the
adaptability, caused the higher efficiency and
knowledge gains for the experimental group. In
future research, this factor could be experimen-
tally controlled for.

The constructed training program was
dynamic, whole-task based (students learned to
solve equations, not separate operations), and
individualized. It incorporated cognitive load as
an essential factor of the learning task selection
procedure. An important advantage of the sug-
gested approach for building learner-adapted
instructional e-learning environments is its rela-
tive simplicity. Using rapid diagnostic tests for
real-time online monitoring of student perfor-
mance does not require all the complex compu-
tational machinery of continuous tracing of
student models used in most intelligent tutoring
systems. We applied a dynamic-problem-selec-
tion approach to the completion strategy similar
to that implemented in CASCO (completion
assignment constructor; van Merriënboer,
Krammer, & Maaswinkel, 1994), but without
using a complicated fuzzy-logic–based instruc-
tional model and student profile. 

The dynamic-problem-selection procedure
realized in this article is also similar to those
implemented by Camp, Paas, Rikers, and van
Merriënboer (2001) and Salden, Paas, Broers,
and van Merriënboer (2004) in air traffic control
training. However, we used an entirely different
performance assessment method (based on
rapid cognitive tests), an alternative definition of
instructional efficiency, and a different task
selection algorithm that allowed a smoother
transition between stages of training. Despite
these differences in approach, learner-adapted
formats proved to be more effective than non-
adapted formats in all these studies.

This study was designed to test the usability
of the learner-adapted procedure in e-learning
environments. The suggested efficiency-based
approach requires further investigation and
fine-tuning by, for example, using varying cri-
teria of attaining required levels of knowledge in
a domain, and designing less intrusive nonver-
bal formats of subjective rating scales more suit-
able for electronic learning environments. A
motivational perspective on the relation

between mental effort and performance could
also be taken into account (see Paas, Tuovinen,
& van Merriënboer, this issue). To determine the
limits of applicability of the approach in adap-
tive e-learning environments, we need to test it
in other domains, especially in less structured
areas such as monitoring language comprehen-
sion in online reading tutors.
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